Toronto Metropolitan University
Browse
- No file added yet -

A 1.8V 1.1-GHZ Novel 8 X 8-Bit Digital Multiplier

Download (4.71 MB)
thesis
posted on 2021-05-22, 16:26 authored by Amir Ali Khatibzadeh
This thesis presents the design of an 8x8-bit novel multiplier, which can provide a better performance that its counterparts in the sense that it has a fraction of the silicon area, delay and power consumption of the common architectures such as the conventional linear array multipliers. At the system-level high performance is obtained by implementing a pair-wise multiplication algorithm. Also, parallel addition algorithm is used to add up partial products. Combining these two algorithms results in an efficient cell-based circuit realization. In the circuit-level, pseudo-NMOS full adder cell is chosen amongst the several existing full adder cells due to its superior speed and power performance. The performance of this design has been evaluated by comparing it to those of the recently reported multipliers. The results of the comparison, both in theory and simulation, prove the superiority of the proposed multiplier.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Electrical and Computer Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Thesis Advisor

Kaamran Raahemifar

Year

2004

Usage metrics

    Electrical and Computer Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC