Toronto Metropolitan University
Browse
- No file added yet -

3-D modeling and simulation of crystal growth of GE₀.₉₈ Si₀.₀₂ under the influence of various gravity levels, G-jitter and rotating magnetic field using traveling solvent method

Download (71.29 MB)
thesis
posted on 2021-05-22, 16:17 authored by Mehdi Mohammadi Shemirani
A three-dimensional numerical simulation was conducted to study the effect of a rotating magnetic (RMF) field on the fluid flow, heat transfer and mass transfer in the presence of various gravity levels by utilizing the traveling solvent method (TSM). The presence of the RMF suppressed the buoyancy convection in the GE₀.₉₈ Si₀.₀₂ solution zone in order to get homogeneity with a flat growth interface. It was found that the intensity of the flow at the centre of the crucible decreased at a faster rate compared to the flow near the walls when increasing magnetic field intensity is combined with a certain rotational speed. This behavior created a stable and uniform silicon distribution in the horizontal plane near the growth interface in the terrestrial condition. Different magnetic field intensities for different rotational speeds were examined in both terrestrial and micro-gravity conditions. The effects of residual acceleration, known as G-jitter, on board the International Space Station and European Space Orbiter were also investigated.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Mechanical and Industrial Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Thesis Advisor

M. Z. Saghir

Year

2008

Usage metrics

    Mechanical and Industrial Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC