posted on 2021-05-23, 14:58authored byDmitry Maznichenko
A 3-D nano-fiber particle network of TiO2 nanoparticles is synthesized by pulsed femtosecond laser irradiation of a pure Ti substrate. This study investigated the properties of the resulting nanostructure for chemical and biomolecular detection by Raman spectroscopy. Controlled tuning of surface roughness, porosity and depth of the 3-D network were found to directly influence Raman detection. The presented findings support a previously unrealized detection capacity by TiO2. Crystal violet was used to test the Surface-Enhanced Raman Spectroscopy (SERS) performance of the developed TiO2 sensor pads. The corresponding Raman enhancement factor was determined to be 1.3x106 which is directly comparable to commercial Ag and Au based Raman substrates. Bisphenol-A and diclofenac sodium salt were introduced into drinking water and tested with various sensor pads to develop a Raman detection map. The results suggest an affinity towards uniform TiO2 3-D nanofibrous networks.