Toronto Metropolitan University
Browse
- No file added yet -

ImmerVol: An Immersive Volume Visualization System

Download (1004.6 kB)
preprint
posted on 2023-05-03, 16:01 authored by Naimul KhanNaimul Khan, Matthew Kyan, Ling Guan

Volume visualization is a popular technique for analyzing 3D datasets, especially in the medical domain. An immersive visual environment provides easier navigation through the rendered dataset. However, visualization is only one part of the problem. Finding an appropriate Transfer Function (TF) for mapping color and opacity values in Direct Volume Rendering (DVR) is difficult. This paper combines the benefits of the CAVE Automatic Virtual Environment with a novel approach towards TF generation for DVR, where the traditional low-level color and opacity parameter manipulations are eliminated. The TF generation process is hidden behind a Spherical Self Organizing Map (SSOM). The user interacts with the visual form of the SSOM lattice on a mobile device while viewing the corresponding rendering of the volume dataset in real time in the CAVE. The SSOM lattice is obtained through high-dimensional features extracted from the volume dataset. The color and opacity values of the TF are automatically generated based on the user’s perception. Hence, the resulting TF can expose complex structures in the dataset within seconds, which the user can analyze easily and efficiently through complete immersion.


History

Language

English

Usage metrics

    Computer Engineering

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC