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Abstract—Channel allocation has a direct and profound im-
pact on the performance of vehicle-to-everything (V2X) networks.
Considering the dynamic nature of vehicular environments, it is
appealing to devise a blended strategy to perform effective resource
sharing. In this paper, we exploit deep learning techniques predict
vehicles’ mobility patterns. Then we propose an architecture con-
sisting of centralized decision making and distributed channel allo-
cation to maximize the spectrum efficiency of all vehicles involved.
To achieve this, we leverage two deep reinforcement learning tech-
niques, namely deep Q-network (DQN) and advantage actor-critic
(A2C) techniques. In addition, given the time varying nature of the
user mobility, we further incorporate the long short-term memory
(LSTM) into DQN and A2C techniques. The combined system
tracks user mobility, varying demands and channel conditions and
adapt resource allocation dynamically. We verify the performance
of the proposed methods through extensive simulations and prove
the effectiveness of the proposed LSTM-DQN and LSTM-A2C
algorithms using real data obtained from California state trans-
portation department.

Index Terms—Advantage actor critic (A2C), channel allocation,
deep Q-learning network (DQN), long short-term memory
(LSTM), multi-agent deep reinforcement learning (MADRL),
spectrum efficiency, mobility, vehicular networks.

I. INTRODUCTION

EHICLE to everything (V2X) type vehicular communica-
V tion is envisioned to culminate in an efficient intelligent
transportation systems paradigm. V2X communication is also
essential for upcoming autonomous vehicles. The 5G automo-
tive association (SGAA), a consortium formed by telecommu-
nications, technology, and automotive industries, is working
on developing end-to-end solutions for cellular V2X technolo-
gies [1]. IEEE 802.11p is the dominant standard used for ve-
hicular networking. However, the wireless access in vehicular
environments has introduced changes to the conventional IEEE
802.11p to handle periodic and event-driven messages of the
vehicular networks. V2X scenario incorporates vehicles to road
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side unit (RSU) connections known as vehicle to infrastructure
(V2I) communication and vehicle to vehicle (V2V) communi-
cations [2]. It is crucial that the V2X systems not only need to
be intelligent, self-learning, and adaptive but also ultra reliable
with low latency.

Vehicular communication requires high bandwidth connec-
tions from servers for infotainment applications like video
streaming. Whereas, safety related information shared among
vehicles requires ultra reliable, low latency communications.
Hence, dynamic channel allocation is more challenging to meet
different QoS requirements in real-time with limited spectrum.
Moreover, the shortage of ubiquitous road-side infrastructure
results in coverage issues. Hence, V2X demands effective
utilization of RSU resources. Also, RSU is required to support
high-priority vehicles by providing pervasive coverage and
guarantee better QoS for V2X communications [3].

A. Related Work

Efficient resource allocation for vehicular networks is of inter-
est to many. Significant challenges are, seamless data transfer in
ahighly dynamic situation that includes low-speed to high-speed
vehicles in a shared environment, and considerable variation
in data services to support delay-sensitive vehicular commu-
nication. Various devices are employed in vehicular networks
with different hardware parameters that demand competent in-
terfaces [5]. Also, connected vehicles suffer from an extensive
range of impairments which are not limited to shadowing,
jamming, multiuser interference, path loss, frequency selective
channels, and loss of connectivity with RSU due to low earliest
deadline first (EDF) limitation. The EDF is initially proposed
for wireless networks that demand delay sensitive quality of
service (QoS) in [6]. The vehicle’s speed information has a
significant impact to the spectrum sharing in handling massive
data allocation to channels and quality of experience (QoE) of
connected vehicles [7], [8]. A changing network environment
causes inaccurate channel state information, which affects the
accuracy of resource sharing [9], and frequent handoff of channel
allocation [10]. V2X mainly requires efficient channel alloca-
tion, uninterrupted data transfer, and smart handoff techniques
for highly mobile user equipment. The typical wireless resource
allocation approach has long formulated the design objective
and constraints as an optimization problem. In this section, we
discuss resource allocation using conventional, reinforcement
learning, and deep-reinforcement techniques.
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Resource Allocation based on Conventional Techniques:
Until now, most resource allocation techniques utilize
instantaneous knowledge of the system hence, long- and
short-term variations not appropriately incorporated. For
example, a V2V resource allocation method based on
cellular V2X technology is proposed in [11] to improve
a vehicular network’s reliability and delay. The authors
have optimized resource allocation by choosing the best
receiver for V2V correlation identification and appropriate
channel assignment to reduce overall latency. In [12], the
authors’ objectives are to maximize the system throughput
in multi-channel cognitive vehicular networks. This is a
non-linear integer programming NP-hard problem. Since,
heterogenous vehicles demand different resource allo-
cations, a semi-markov decision process (SMDP) based
resource allocation for vehicular cloud computing is pre-
sented in [13]. A quick guarded message is essential in
vehicular networks to transmit alarming messages. Hence,
joint power control and resource allocation for safety-
related message communication is proposed in [14]. In
[15], an energy-efficient resource scheduler for networked
fog centers is proposed for better resource management.
A delay-optimal virtualized radio resource scheduling
scheme is proposed through stochastic learning based
on a software-defined heterogeneous vehicular network
framework in [17].

Resource Allocation based on Reinforcement Learning
Techniques: Many intelligent algorithms have been pro-
posed in the open literature to address the problem
[18], [19]. One promising artificial intelligent technique is
reinforcement learning (RL), in which the agent interacts
with the environment and selects an action. Discerning
action, the agent reaches a new state and obtains a re-
ward if it attains the goal and get punished otherwise
[20]. Recent growth in RL has witnessed its success in
numerous fields such as robotics, medical applications,
and digital games, in addition to vehicular networks. An
adaptive cloud resource allocation is proposed in [21].
It is based on SMDP and RL algorithms in a vehicular
cloud system to guarantee QoS and QoE. In [22], RL
uses a proximal policy optimization algorithm to learn
the changing vehicular networks and perform resource
allocation for the local vehicular fog computing environ-
ment. RL-based user scheduling and resource allocation
are demonstrated with an objective to minimize the age of
computing results [23]. In [24], a continuous-time markov
decision process problem is formulated for offloading
mobile video applications to improve the performance
of V2V communications, and it is resolved using the RL
algorithm.

Resource Allocation based on Deep Learning Techniques:
RL is extensively used for resource allocation techniques.
However, RL faces some difficulties in dealing with ample
state space since it is challenging to traverse every state and
obtain a value function or model for every station action
pair directly and explicitly. Hence, Deep learning sheds
light on solving complex optimization problems (at least
partially). Deep learning allows multi-layer computation
models that learn data representations with multiple levels
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of abstraction [25], [26]. Each layer computes a linear
combination of outputs from the previous layer and then
introduces nonlinearity through an activation function to
improve its expressive power. Deep learning has seen a
recent surge in a wide variety of research areas due to its
exceptional performance in many tasks. In [27], the author
proposed a deep reinforcement learning (DRL) technique
to tackle a complex decision making the problem for
collaborative computing approach in vehicular networks.
In [28], [29], authors applied deep learning models
for wireless resource allocation in vehicular networks to
enhance resource allocation problems. Also, the authors
noted that policy gradient-based algorithms could learn
stochastic policies and tend to be more effective in high
dimensional or continuous action space than value-based
algorithms.

Furthermore, in [30], the authors proposed a joint opti-
mization DRL-based double deep Q network algorithm,
considering mobile edge computing platform to reduce
the cost of energy consumption, the latency of com-
putation, and communication. Another deep Q-learning
(DQN) model is proposed in [31]. The authors suggested
a multi-time scale framework and joint optimal resource
allocation for communication, caching, and computation
strategy. The author considered vehicle’s mobility, the lim-
ited storage capacities, the computational resources at the
RSUs, and complex service deadline constraint in vehicu-
lar networks. In [32], adeep reinforcement learning-based
dynamic resource management (DDRM) is used to solve
the markov decision process (MDP) problem.
Additionally, a DQN based decentralized resource allo-
cation mechanism for V2V communications is proposed
in [33] to tackle the latency constraints in V2V commu-
nications. In this study, the DQN model is trained and
tested using the data generated from the interactions of an
environment simulator and the agents. In [34], the author
proposed inter-slice resource management. The author
has incorporated long short-term memory LSTM into the
advantage actor-critic (A2C) algorithm to achieve better
system utility with different moving users.

Multi-agent deep reinforcement learning (MADRL) focuses
on multiple agents that learn the environment cooperatively and
competitively to produce an action. Here, an autonomous group
of agents yield a shared environment to earn rewards and act
independently to attain a common goal [35]. Considering the
large number of benefits, we explore MADRL to determine the
V2X channel allocation based on vehicles’ mobility rate in the
work [36]. This paper is a significant extension of our earlier
work based on the vehicle’s priorities and the service mobility
factor (SMF). In our work we consider channel allocation in
vehicular networks based on their SMF and its priority. SMF is
calculated based on their mobility rate and geographic position
of vehicles. We use two DRL techniques, DQN and A2C, to
allocate the channel at RSU. Our network consists of commu-
nication between 5G macro-base stations (MBS) to RSUs and
RSUs to vehicles [37]. Also, we apply Mode 4 specified in 3GPP
5G system for V2X communication and tune RSUs to dynamic
channel allocation of vehicles.

Authorized licensed use limited to: Ryerson University Library. Downloaded on November 17,2022 at 18:43:50 UTC from IEEE Xplore. Restrictions apply.



1728

Q)
(Ccopp) (@)
D)

RSU coverage area MBS coverage area Server MBS RSU Vehicle

Fig. 1.  System model for considered vehicular networks in a freeway.

B. Our Contributions

In this work, we consider channel allocation among vehicles
with various mobility rates as a multiagent problem and assume
vehicles as agents. We have considered licensed primary users
as high priority users, while unlicensed secondary users are
categorized as medium priority users and low priority users.

® We propose a mobility-aware priority-based channel allo-

cation using DRL techniques where, the channels are allo-
cated to vehicles based on their SMF and its priority. SMF
is calculated based on the mobility rate and geographic
position of the vehicles.

® We use LSTM to capture the temporal variation regularity

of service requests due to user mobility and append that
with DRL techniques. Also, we combine LSTM obser-
vations with the powerful learning and decision-making
capabilities of DQN and A2C. The research capitalizes on
LSTM’s knowledge to optimize its bandwidth allocation
policy based on a comprehensive understanding of the
dynamic environment. We calculate the reward based on
the user’s SMF, transmission cost, and the used bandwidth.
We also compare the LSTM-DQN and LSTM-A2C under
extensive settings with conventional SMDP.

The rest of the paper is organized as follows; in Section II,
we discuss our System model. In Section III, we describe our
projected SMDP model. In Section IV, we present proposed
deep RL based mobility aware channel allocation. Section V
presents simulation results, and Section VI concludes the paper.

II. SYSTEM MODEL

A. Network Structure

We consider a cognitive-enabled vehicular communication
network with Np RSUs along the road as showninFig. 1. All Ny
RSUs and their users under an MBS can communicate among
themselves. In our work, high priority users (H-users) have
priority to communicate in the licensed spectrum. Ambulance,
fire trucks, on board units, and police vehicles are H-users.
Medium priority users (M-users) and low priority users (L-users)
are unlicensed users. Examples for M-users are school buses,
trucks, and heavy-duty vehicles. L-users are cars and vans. In
our model, H-users, M-users, and L-users share the licensed
channels. H-users have the priority to access the spectrum.
At the same time, M-users occupy bandwidth in cooperation
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TABLE I
SYSTEM PARAMETERS

User Priority H M L

User Arrival Rate A Am Al
Average Service Time 1/pn 1/pm 1/
Number of users np Nom ny
Services with ¢ channels Nhe Nme Nie
Service Request Arrival event Ap Am Ay
Service Request Completion event Fhe Fe F.

Transfer Vector T, T | T¢, Tlcmm -
Rewards Ry Rm Ry

with H-users. L-users can opportunistically utilize the spectrum
bands when those channels are unoccupied by both H-users and
M-users. Once a user intends to utilize the approaching RSU,
it communicates its mobility rate (m,.) and geographic position
to the intended RSU. Thus, the considered RSU based on the
given information predicts the section speed and allocates the
channel.

B. Channel Model

In our work, the H, M, and L users share X number of channels
from one RSU. The users arrive with poisson distribution, with
the mean rate of A;, for H-users, A,,, for M-users, and A; for
L-users. At initialization, the number of channels that can be al-
located to each vehicleis ¢, where ¢ € (1,...,C),C < K isthe
maximum number of the channels allocated to one service. Each
RSU s covering D meters as coverage diameter. As the vehicle
enters the RSU coverage area, its service rate of the requests is
calculated using mobility rate m,. calculated using 4 = m,./Dg.
RSU accepts the request based on the following initial criteria.
First, RSU agrees with the request based on the availability of
channels. Second, it considers vehicles within the RSU range for
channel allocation and calculates the vehicle’s service deadline
established on its mobility rate. Based on channel availability,
a user can get a high transmission rate if many channels are
assigned for the same service, reducing the cost of occupying
the channel as its gains can be completed in a shorter period.
The residence time for a vehicle connected with a single RSU
is an exponential distribution with a mean time of 1/up [4].
The average service time for one allocated channel use is 1/,
1/ ttm, and 1/u; for H, M, and L-users respectively. When all
channels are occupied and an H-user arrives, we clear an existing
L-user and allocate that channel to the H-user. Similarly, if the
channel is busy and an M-user enters, then the L-user channel is
vacated and handed the channel to the M-user. When an M-user
leaves the coverage area of an RSU, then the channel allocation
is transferred to the MBS. The same approach is maintained
for L and H users as well. System parameters of these three
classes are given in Table I. Generally, an SMDP is divided
into five parts 1) State Space, 2) Action Space, 3) Transition
Probabilities, 4) Reward Model, and 5) Decision Epochs [4].
This section discusses all the parts of SMDP.

C. Mobility Scenario

Section speed is the speed in km/hrs of a vehicle passing a
given location on a highway. Section speeds and travel times
of motor vehicles may vary because of different physical fac-
tors (curvature, sight distance, frequency of intersections, and
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roadside development), various traffic factors, and different en-
vironmental factors. In this part, we analyze the section speed
distribution of a vehicle. A study of the relation between spot
speeds and travel times reveals how to consider the speed during
channel allocation at RSU. To analyze the speed distributions,
we should consider the mean travel time of the vehicle. We also
assume the speed of a vehicle fluctuates fairly smoothly with the
maximum speed not more than 2 or 3 times the minimum.

D. Problem Formulation

In this paper, we aim to maximize the spectrum efficiency.
Channel allocation is done for /V vehicles, hence mathematically
we can denote 1...N sharing the aggregated bandwidth B
and having fluctuating demands m = (m; ... my). We aim to
maximize the long term reward expectation E{ R(b, m)}, where
the notion E(-) denotes to take the expectation of the argument,
given as,

argmax BE[R(B,m)] = argmazE{a - SE(b,m)}
b b

)

S.t.tb:(b],...,bN)
by + -+ by = B;

m=(my,...,my)

m; ~ mobility model,¥i € [1,..., N].

The critical challenge to our problem statement is to provide
maximum spectrum efficiency to the volatile demand of vehicles
without having known a priori due to the mobility model. Hence,
LSTM -DQN, and LSTM- A2C are exactly matching solutions
to solve the problem.

III. CHANNEL ALLOCATION BASED ON SEMI MARKOV
DECISION PROCESS

1) State Space: The state-space is a time-domain method
that presents a suitable and compact way to model
and analyze systems with multiple inputs and out-
puts. In our proposed state space model, we have five
units. The first three units relate the channel alloca-
tion. Channels allocated to H-users are denoted by nj, =
{nn1, 02, ..., npc T, where, ny,c represents number of
H-user services allocated with C' channels. Similarly,
channels allocated to M and L users are denoted by n,,, =
{nm1,mma, - e} and ng = {ng, e, e}
respectively, with Ele c(Mpe + Nne + nye) < K s the
given condition. The fourth part is the SMF denoted by 7,
given as,

n=-—, @)

where, d, is the distance of the vehicle to the intended
RSU and m, is the mobility rate of the vehicle. n* is
the threshold value considered and it varies depending
on the priorities of vehicles. In our model, RSU conti-
nously receives the user details about their mobility rate,
geographic position and determines the SMF. If, n < n*,
it shows the vehicle will move out of the coverage of

current RSU sooner. The fifth part is event, given as
ec{An, A, Al Fre, Fone, Fiet. Ap, A, and A are
the arrival events of H, M, and L users’ service requests
respectively. Fyc, Fine, and Fj. are completion events of
H, M, and L user services using ¢ channels respectively.
The system space is given as,

S = {s]s = np, N, 0y, M, €} 3)

2) Action Space: The action space is the set of possible ac-

3)

tions and evaluations that we can consider after observing
the information. The system should choose an action based
on a new request. When an L-user request occurs and
satisfies the condition 7 < 7*, ¢ channels are allocated to
that user. It is denoted as,

_J e, <y,

a(m o, 1, Ay) = {0, otherwise. “)
Likewise, when an M-user request arrives, the system
assign c¢ channels, if n < n* condition is satisfied. It is
denoted as,

!
(m, e, T), l n <t
a’(nlanmvnh,7Am) = (macmin;Tcmin)v 77 > 77*’
0, otherwise,

(5)
where, T = {T/, T¢, ., T} ins -, TI}T is the transfer
vector for L-user. Whenn < n*, T! is the number of L-user
services allocated with ¢ channels that are transferred to
MBS to accommodate M-user services in the RSU range.
Otherwise, T7,,.,, is the least minimum L-user services
allocated with ¢y, channels, also 77, . < T
Similarly, when H-user request arrives, the system will
accept the request with ¢ channels and is given as,

(h7 C7 Tm7 Tl)7 ’r] S 77*’
(hye, T™,TY, n> 7",
0, otherwise,
(6)
where, T™ = {T/", T2, ..., T }T is the transfer vec-
tor for M-user. 7" is the number of M-user services
allocated with r channels that are transferred to MBS
to accommodate H-user service request. When n < n*,
maximum number of channels C' is allocated to a sin-
gle H-user service to attain high tranmission rate and
also satisfies C' < K. When n > n*, the system assign
c channels. As all continuing services are completed, we
denote the idle action space as a(n;, ny,,np, A) = —1,
and F' € (Fpe, Fine, Fie). The summarized action space
is given as,

a(m,nm,nh, Am) =

(a‘(nla nmanthl)) a(nlvnm)nh) Am)7
A= (N

a(ng, nm, np, Ap), a(ng, n, np, F)).

Transition Probabilities: Note, we use the Continuous
Time Markov Decision Process. Hence, the time interval
between any two state-action pairs (s, a) is an exponen-
tially distributed variable. Assuming time interval 7(s, a)
as the expected value, the (s, a) is the mean occurrence
rate of this event. Note, d(s, a) is the reciprocal of 7(s, a).
We can calculate transition probability p,(s}|s,a) using
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mean rate of events. The mean rate for events is given as
follows:

0(s,a) =

do(s,a) + (C/g + pa), e=A,a=(lc),
So(s,a) = S22y Tl + pa) + (Cm + pa),
€= A’rruaf = (ma ¢, Tl)7
So(s,a) — Soymim Tl + pa) + (Coninfm + Ha),
€= Amaa = (ma Cmin, Tlcmzn)a
50(37 a) = Yo T + pa) + (Cim + pra)
Y om=1 T (mp + pa) + (cpn + pa),
e=Ap,a=(h,C, Tl,Tm)
o, a) = o0 T (L + pra) + (Cpm + f1a)
Yot T (4 pra) + (cpn + pra),
e= Ap,a= (h,c,T", T™)

0o(s,a), otherwise,
®)
where, dy(s, a) can be expanded as below:
c
do(s,a) = Ap 4 Am + A + Z[“lc(ﬂl + pa)+
c=1
Nome2(fom, + pod) + ne2(pen + pa)l- )

For instance, M-users transition probability is given as,

pT‘(SHS)a) =
5(2’la)m S/] = (m — Tl, N, + IC, Al);
5(/\572)w sh=(n — T n, + 15 A,),
5(2% ;o osh=(ng — T g — T ny + 16, Ay),
%W752 = (nl — Tl _ In’nm +IC7EC),
At = ()~ T, Foe)
mc+1 minMmt1d
(n )§fs,a> tmtpa) o — (g =T M, Fne),s
1
%W’S% — (nl _ Tl _ Ic,nm + Im7ﬂc)7
%,Sé = (1 — T g + 1™ — 1, E),
(nme) (Cmintbm +itd)
0(s,a) ’

sh=(n; — T

cmin)

Nm + Im - Ic; ch)a
(10)

where, I¢, 1", and I" are vectors with C' elements, in which
all the elements are zeroes except the c”, m*", and the n*"
element being 1, respectively.

4) Reward Model: There are two parts in the reward function.
The first part is the instant reward i(s,a) given from
the user after an action is selected and the second part
is the system cost ¢(s,a). The reward function can be
formulated as,

r(s,a) =i(s,a) — g(s,a). an

With an increase in H-user requests, both M-users and
L-users are transferred to the MBS. In that case i(s, a)
can be given as,

i(s,a) =

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 2, FEBRUARY 2022

0, a(ng, N, np, F) = —1,

_Rl7 a(nl,nm,n;,,,Al) :Ov

Rl - Rc X ¢, a(nlvnmvnhaAl)
= (L=<,

R, — Re X ¢ — B, a(ng, nm, np, Am)
= (m,c, T, n <7,

Rm - Rc X Cmin — Bminh

a(nlvnmvnthm) = (mvcminaTlcmin)v
n>n,

R;, — R xC — Otmax,a(nl7nm7nh7Ah)
= (h,C,T™, T, n <7,

Ry, — Re x ¢ — Oy, a(ng, i, np, Ap)
= (h,c, Tm7Tl)ﬂ n>n,

where, R;, R,,, and Rj; denote reward from
L, M, and H wusers respectively. R, denotes the
transmission cost of lodging one channel. B; =
{ZCC=1 TcEt + CTcUt}s Bmint = {ZCC:] TcminEt +
CTcminUt}a Otmam = {chzl TcEtUt(l + C) + Zf;]
rT,E U}, and Oy = {2 T.EU(1+¢) +
ZTC:I rT,.E:U;} are the overall cost involved in
transferring affected L and M user services respectively.
At the condition, n < n* for H-users, we allocate
maximum channels for single service which results in
shorter duration of serive completion. Thus, less cost is
incurred for occupying the channels. The system cost
g(s,a) can be defined as,

12)

g(s,a) = 7(s,a)o(s,a), (13)

where, 7(s, a) is the time interval and o(s, a) is the cost
rate of the system.

5) Decision Epochs and Goal Achievement: Expected long
term reward always focuses on agent’s ability to maximize
the long-term reward [16]. It is defined from the agent’s
goal. In our model, it is given as:

T Y .
BT = lim E7 > —oli(8m, am) — T1n0(Sm, am)]

s0 Y =00 E;TO Zz;:(, Tm 14)

where, s is the initial state and 7,,, is the time difference
between any two states of a decision epoch. Since, our
local reward for any action depends on initial cost and
user satisfaction, we can find the optimal policy to obtain
the average reward. The optimal policy that generates a
long-term reward is given as,

" € argmazx h™.
a

5)

IV. MULTI-AGENT DEEP REINFORCEMENT EMPOWERED
MOBILITY AWARE CHANNEL ALLOCATION

A. Basics of DON, A2C and LSTM

1) Deep Q-Network (DQN): DRL has attracted much atten-
tion in recent years due to its capability to provide a good
approximation of the objective value (referred to as Q-value)
while dealing with extensive state and action spaces. In deep
Q-learning, a DNN parameterized by 6 called deep Q-network
(DQN), represents the action-value function. In contrast to
Q-learning methods that perform well for small-size models
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but perform poorly for large-scale models, DRL combines a
deep neural network with Q-learning, referred to as DQN, for
overcoming this issue. Using DQN, the deep neural network
maps from the (partially) observed state to an action, instead
of storing a lookup table of Q-values. Furthermore, large-scale
models can be represented well by the deep neural network so
that the algorithm has the ability to preserve good performance
for very large-scale models. The user fully observes network
state-action space with soft policies and stores the transition
tuple (s, at, Re11, S+4+1) in a replay memory at each time step.
By applying Q-learning to the given setting, DQN updates the
Q-value at time ¢ and it is given as,

Q(s¢,a¢) < Q(st,a¢) + (R +y

maa/’XQ(st+17a/) - Q(stvat)]v (16)
where, v € [0, 1] is the discount factor, « is the learning rate
set to 0 < o < 1, generally is set close to zero. The choice of
a; in state s; follows some soft policies, usually the e-greedy,
meaning that the action with maximal estimated value is chosen
with probability 1 — ¢ while a random action is selected with
probability . Over many episodes of the markovian process,
the replay memory accumulates experiences. A mini-batch of
experience D are uniformly sampled from the memory at each
step which contributes in updating 6, hence the name experience
replay. The algorithm mainly aims at minimizing the time dif-
ference error between the learned value and the current estimate
value. To minimize the sum-squared error:

Z[Rt—i-l + ymax Q(st41,a1),d'5607)
D

- Q(Sta Q¢ 9)]27

where, 6~ is the parameter set of a target Q-network, which
is duplicated from the training Q-network parameters set 6
periodically and fixed for a couple of updates. Experience replay
improves sample efficiency through repeatedly sampling stored
experiences and breaks correlation in successive updates, thus
also stabilizing learning [31].

2) Advantage Actor-Critic (A2C): In the field of RL, A2C
algorithm combines two types of RL algorithms (policy based
and value based) together. Value based algorithms learn to select
actions based on the predicted value of the input state or action.
The A2C model is synchronous; it provides better consistency
among agents, suitable for disaggregated deployments. At each
time step ¢, the agent receives a state s; € .S and selects an action
a; from the set of possible actions A according to its policy
m(a¢|st). The agent reaches the next state sy after interacting
with the environment. The total reward at time-step ¢ is Ry =
ZZO:O fyerk, where + is the discount factor takes the value
between O and 1. The goal of the RL agent is to maximize the
expected return from each state s;, which can be estimated by
the action-value function Q™ (s;, a;) and the state-value function
V™ (s). The state-action value Q7 (s;, a;) estimates the expected
return for selecting action a in state s at time ¢ and it is given
as Q™ (s¢,ar) = Elry + 71 + 2 + -+ - 8¢, a¢] and it is
simplified as Q™ (s¢, a¢) = E[R¢|s¢, at]. The state value function
V7™ (s) is given as E[R;|s;—s| which gives the average expected
return from state s.

(17)
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The advantage actor critic is given as A™(s;,a¢) =
Q™ (s¢,a¢) — V™ (s;) which represents the advantage of per-
forming action a; at state s,. Usually the temporal difference
(TD) error can be used to estimate A™(sy,a;) and its given
as A" (s, ar) = E[R¢|s¢, at] — V™ (se), that is expressed as
(e + V™ (St41)s1,a, — V7 (5¢))] = 0(s¢). The gradient of the ac-
tor is Vo7 (0) and loss function of critic is given as £ = §(s;)>.

3) Long Short-Term Memory Networks (LSTM): LSTM net-
works are a special category of RNNs that are suitable for
learning long-term dependencies [38]. The key part that en-
hances LSTMs’ capability to model long-term dependencies is
a component called the memory block. In LSTM, the memory
block is a recurrently connected subnet that contains functional
modules called the memory cell and gates. The memory cell is in
charge of remembering the temporal state of the neural network
and the gates formed by multiplicative units are responsible for
controlling the pattern of information flow. According to the
corresponding practical functionalities, these gates are classified
as the input gate, the output gate and the forget gate. The input
gate controls how much new information flows into the memory
cell, while the forget gate governs how much information of the
memory cell still remains in the current memory cell through
recurrent connection, and the output gate determines how much
information is used to compute the output activation of the
memory block and further flows into the rest of the neural
network. Through the cooperation between the memory cell and
the gates, LSTM is endowed with a powerful ability to predict
time series with long-term dependences.

B. DRL Based Channel Allocation

In our proposed DRL structure, we propose both LSTM-DQN
and LSTM-A2C models. LSTM captures the temporal variation
regularity of service requests due to user mobility and further
applies the powerful learning and decision-making capability
of the A2C mechanism to optimize its channel allocation policy
based on the comprehensive understanding of the dynamic envi-
ronment. To capture the temporal correlation of service requests,
we define the state s; = (0t—71,0t-T+1,...,04-1) as a series
of observation vectors, where each observation vector O; is
the number of arrived vehicles in each section within the ¢
scheduling period. Then the action a; = by, ...,by is defined
as the channel allocation to each vehicle. We design the reward
function as,

re = ra(SE)Isarr(se,at) + T (SE)Ispr(st, ar)+

ri(SE)Ispr(se, ar), (18)

where, Isprp(8t, a:) = [0, 1] is an indicator function based on
the service mobility factor, whether the bandwidth allocation
is provided by RSU. Igpsr(s¢, ar) = 1 indicates the channel
allocation, if Igprp(s¢, ar) = 0, otherwise.

C. LSTM-DQN Based Channel Allocation

In our proposed LSTM-DQN based model as in Fig. 2, s, =
(0t—T,0t—T+1,--.,0t1) is the state-observation from LSTM
network. The agent then takes an actiona; € A =1,..., K and
receives a reward ;. The objective of the agent is to take actions
that maximize the total rewards. The future reward is calculated
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Fig. 2.

Algorithm 1: The LSTM-DQN.

Initialize Parameters:action-value function 6, target
action-value fuction §* = 6, replay memory Dy to

capacity N

: fori=1to T do

Append s; = (0;-7,0t-T41,-+-,0-1)

State processing network output s,

Given s, select a random action a; with probability e

Otherwise select a; = max, Q(s¢, a;0)

Obtain r; from equation (18) and new state s

Store (s¢, ag,re, S¢41) into; Dy

Sample (s;, a;,7;, Si4+1) from; Dy

set target y = r; + max, Q*(s;+1,a)

10:  update the parameters of 6 to make (s}, a;) close to

11: [Q*(s},a,); 0~ — Q*(s¢, as; 0)]* with network

12:  parameters 0

13:  Every C steps rest 0* = 6

14: end for

LSTM-DQN architecture.

—

D A A

with Ry = >, v'r., where ~ discount factor remains between
0 and 1. To achieve the objective, LSTM-DQN considers the
action corresponding to the maximum action-value function as
follows,

Q(st,at) = mTEriXE[’I“t + YT

+ g+ |se ag, 7). (19)

Q*(s¢, ay) is the expected value of the future discounted rewards
under the policy m = P(a¢|s;). The agent stores the past experi-
ences like e; = (s¢, ay, s}, R(s¢, at)) at episode t into a dataset
D; and selects mini-batch items from the dataset to the Q-value
of the neural network Q* (s, a;). LSTM-DQN approximates the
Q-value function with vector 8, hence Q*(s;, a;) approximates
to Q* (8¢, at; 0). In order to make Q*(s¢, at; @) close to the target
value Q*(s}, a}; 0~ ) the loss function can be given as,

[’dq(e) = E(stvatvr’ S;) ~ U[Q*(S;,a;;e_)
- Q*(Staat;o)F)

where, Lg,(0) is the loss function and 6~ is the parameters
of the target network. To minimize the parameter 8 of Lg4(6),
gradient based approach is used,

0! 0" — aV Ly, (0Y)
— @ — Q[Q*(s't, a't); 07 — Q" (s¢,a1;0)].

(20)
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Fig. 3. LSTM-A2C architecture.

D. LSTM-A2C Based Channel Allocation

1) Actor Network: FromFig. 3, the actor network is responsi-
ble for generating actions based on current states. First, the actor
neural network observes s; as input and extracts action-related
features. Second, the neural network maps the output into the
probability of different actions 7 (a;|s;) using softmax function.

2) Critic Network: The critic network is responsible for es-
timating state values. First, the neural network takes the state
processing s; output as its input to extract value-related features.
Second, the neural network obtains the state value V™ (s;). We
can estimate the state processing network and the critic network
with parameter 6.; and the action network with parameter 6.
Also, we include entropy to loss function of the actor-network
to inspire the exploration [34].

Eac - _[(st(sh Hct)log’]r(at|st; aac) + CS’/T(at|St; aac)]v (22)

where, ( is the weight of the action entropy S. The parameter
update of the actor network can be expressed as,

Ologm(a¢|st; Oac
%@(st,acﬁ

OSlogr(at|st; Oac)
004 '
The loss function of the critic network is given as,

Lot = (re + V™ (81413 00¢) — V7 (845 Gac))z.
parameter update of the critic network is given as,
8V” (St; Hct)

004 '

The total loss function for the A2C is given as,

eac A eac +

+<

(23)

(24)

ect — ect + 6t(5ta Hct) (25)

Total Loss = Actor loss + critic loss * critic weight—

entropy loss * entropy weight. (26)

V. PERFORMANCE EVALUATION

A. Dataset Collection from PeMS

Data collection for this research is downloaded from Caltrans
Performance Measurement System (PeMS) [39]. In this work
we consider, the speed of vehicles between two detector stations
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Fig. 4. The traffic flow between two station in the Glendale free way.

Algorithm 2: The LSTM-A2C.

Initialize Parameters:0,., 0.,
Buffer length 7" and time step ¢t = T" + 1;

2: fori=1to7T do
Choose an random action a; € A; perform a;

4:  Agents observe O; at end of i*" scheduling period
append O; to the buffer end.

6: end for

for each iteration do

8: Append St = (Ot—T7 Ot—T41s5+--y Ot—l)
State processing network output s;
10:  Calculate 7(a¢|st), V™ (s¢) using s;

Each step compute 7; using (18)
Append o; to form sy = (0t—741,--.,0¢),

s¢+1 Output of state processing network is sy
Calculate V™ (s441)

Calculate 6t (St) = (’I"t + ’YVW(SH_] N ect) -V (St))
Update 0., 0.4, <t + 1

Calculate the total loss using (26)

18: end for

12:

14:

16:

767484 and 767497 of Glendale free way as shown in Fig. 4.
We consider a duration of 2021-04-01 00:00:00 to 2021-07-31
23:59:00 for the data set. We update the dataset with a frequency
of every 30 seconds. The whole sample points in the dataset we
used include 12,000 samples, among which 80% is used for
training, and the remaining 20% is used for testing. As shown in
Fig. 4, we obtain the statistical data recorded at several stations
near district 7, Los Angeles County. The red dots represent the
positions of data detection, which we marked as A, B, C, D, etc.,
and the red arrows represent the direction of traffic flow.
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TABLE I
HYPERPARAMETER FOR LSTM-DQN AND LSTM-A2C
Hyperparameter Value Algorithm
Units per layer [100,100] All
Activation Function Sigmoid All
Batch Size 64 All
Loss Function MSE DQN
Reward decay (7) 0.9 All
e-greedy value 0.99 DQN
Experience Replay Memory Size 100,000 DQN
Packet size 512bytes All
Exploration steps 1,000 All
Speed 10-140 km/hr All
Value loss factor 1 A2C
Entropy loss factor 0.1 A2C

B. Experimental Setup

In terms of hardware, all experiments are carried out in Colab
[40] with GPU Tesla k80, CPU @ 2.20 GHz, 13 GB of RAM,
and hard disk of 108 GB. All the models are built using Keras
API. The proposed LSTM-DQN and LSTM-A2C architecture
are implemented on the Tensorflow platform (v1.14.0) [41].
Hypermaraters for LSTM are as follows, the learning rate is
0.0001, and the batch size is 64. The ReLu is used in the activa-
tion function. Adam optimizer is used. The hyperparameters of
DQN and A2C are shown in Table II.

C. Simulation Results

Fig. 5 depicts lane speed prediction over time in minutes.
The LSTM updates the input in its memory continuously, which
enables long-term learning. There is a fluctuation in the pattern
during training the dataset. When the learning minutes increase,
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SMDP.

the previous dataset helps LSTM achieve greater prediction ac-
curacy. Therefore, this proves that LSTM is capable of learning
and remembering long-term dependencies.

Fig. 6 depicts the SE with various vehicular speeds and an
increasing number of iterations. Fig. 6(a) shows the SE with
varying user speeds in a single iteration. The SE is high at
low speed and decreases with an increased speed due to the
elevated number of hand-offs to MBS and consecutive RSUs.
In Fig. 6(b), the proposed LSTM-A2C achieves the highest SE
among the three methods, indicating that LSTM-A2C can best
capture the temporal variations of service requests and adjust
the bandwidth allocation flexibly to improve SE. LSTM-DQN
also shows some improvement in SE because it conservatively
allocates bandwidth to get stable SE. However, this is inferior to
LSTM-A2C. In addition, LSTM-A2C also converges to the same
final level as LSTM-DQN but exhibits a more stable convergence
curve.

A reward is always part of the problem definition and should
be based primarily on the agent’s goals. Fig. 7 depicts rewards
for various episodes. From Fig. 7, SMDP produces good re-
wards during initial episodes but it gradually decreases with
increasing episodes. SMDP is a model-based algorithm that can
perform well with synthesized transition probabilities while not

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 2, FEBRUARY 2022
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handling a massive dataset of real-time environment. Also, we
can observe that all the RL algorithms have apparent perfor-
mance improvements through learning and ultimately achieve
higher system rewards than SMDP when the number of episodes
increases. Although DQN shows increasing rewards among RL
algorithms, its performance is not as good as the proposed
A2C algorithm, which can achieve a reward of 350 after 4,000
iterations. In addition, the LSTM-A2C algorithm also exhibits
superior performance to the LSTM-DQN algorithm in terms of
both convergence rate and obtained utility.

The loss function is the TD function, the exact difference
between the state at the actual bifurcation point and the state
at the estimated future. Fig. 8, depicts the loss derived from
(20). Loss decreases with an increase in the number of episodes,
showing more accurate predictions of value for the current
policy. Fig. 9, shows the total losses derived from (26). The
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spikes in the losses are due to change in the environment. As
the number of episodes increases LSTM-A2C, adjusts its initial
value (start state) to choose the correct actions to reduce the loss.

VI. CONCLUSION

This paper investigates a multi-agent deep reinforcement
learning approach for mobility-aware channel allocation for
connected vehicles. We provide an intelligent channel allocation
technique for vehicles that have different speeds at different
sections. We incorporate the LSTM network into DQN and
A2C algorithms to address the significant challenge of MADRL,
like partial observability. Our proposed intelligent decision al-
gorithms, LSTM-DQN and LSTM-A2C, accurately capture the
demand variations plus user mobility and make appropriate re-
source allocation decisions in a dynamic network environment.

We have compared the proposed DRL techniques with con-
ventional SMDP. Experimental results show that the proposed
DRL techniques can guarantee higher spectrum efficiency and
maintain better spectrum efficiency with large fluctuations in
user requests, while the users have vastly varying vehicular
speeds. We boldly claim that our proposed DRL techniques
self-learn and self-adapt to the user mobility incurred variations.
We anticipate that the proposed channel allocation techniques
will be a valuable addition to the Internet of Vehicles. The
extension of the proposed DRL channel allocation algorithm to a
fully decentralized multi-agent reinforcement learning scenario
is an appealing direction for future research.
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