Toronto Metropolitan University

File(s) not publicly available

Evaluation of imaging technologies to correct for photon attenuation in the overlying tissue for the in vivo bone strontium measurement

journal contribution
posted on 2024-05-07, 18:16 authored by Ana Pejović-MilićAna Pejović-Milić, C M Heirwegh, David R. Chettle

The interpretation of measurements of bone strontium in vivo using energy dispersive x-ray fluorescence spectroscopy is presently hindered by overlying skin and soft-tissue absorption of the strontium x-rays. The use of imaging technologies to measure the overlying soft-tissue thickness at the index finger measuring site might allow correction of the strontium reading to estimate its concentration in bone. An examination of magnetic resonance (MR), computed tomography (CT) and high-frequency ultrasound (US) imaging technologies revealed that 55 MHz US had the smallest range of measurement uncertainty at 3.2% followed by 1 Tesla MR, 25 MHz US, 8 MHz US and CT at 4.3, 5.4, 6.6 and 7.1% uncertainty, respectively. Of these, only CT imaging appeared to underestimate total thickness (p < 0.05). Furthermore, an inter-study comparison on the accuracy of US measurements of the overlying tissue thickness at finger and ankle in nine subjects was investigated. The 8 MHz US system used in prior in vivo experiments was found to perform satisfactorily in a repeat study of ankle measurements, but indicated that finger thickness measurements may have been misread in previous studies by up to 17.7% (p < 0.025). Repeat ankle measurements were not significantly different from initial measurements at 2.2% difference.




Usage metrics



    Ref. manager