Toronto Metropolitan University
Browse
- No file added yet -

Creating stochastic text data to solve privacy issues in social networking

Download (921.66 kB)
journal contribution
posted on 2023-07-10, 18:21 authored by Abdolreza AbhariAbdolreza Abhari, Jason Li, Nicholas Buhagiar
This work addresses one of the privacy concerns regarding testing social media applications, where testing applications such as recommender systems requires input data from real users. The aim of this paper is to show how probability distributions, in particular the Weibull model, can be used to generate large collections of artificial unstructured data to simulate real data for testing recommender systems. In this work we analyzed data from two social media websites: user tweets on Twitter and comments made in discussion forums on Reddit, both of which contain several thousand data instances.

History

Language

eng