Gain tuning is very important in order to obtain good performances for a given controller. Contour tracking performance is mainly determined by the selected control gains of a position domain PID controller. In this paper, three popular evolutionary algorithms are utilized to optimize the gains of a position domain PID controller for performance improvement of contour tracking of robotic manipulators. Differential Evolution (DE), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) are used to determine the optimal gains of the position domain PID controller, and three distinct fitness functions are also used to quantify the contour tracking performance of each solution set. Simulation results show that DE features the highest performance indexes for both linear and nonlinear contour tracking, while PSO is quite efficient for linear contour tracking. Both algorithms performed consistently better than GA that featured premature convergence in all cases.