Toronto Metropolitan University
Browse
- No file added yet -

Autonomous optical navigation using nanosatellite-class instruments: a Mars approach case study

Download (1.09 MB)
journal contribution
posted on 2023-07-27, 20:32 authored by John EnrightJohn Enright, Ilija Jovanovic, Laila Kazemi, Harry Zhang, Tom Dzamba

Star trackers must be calibrated prior to flight so that they can make accurate measurements of star positions within the instrument field of view. This calibration is usually performed in atmosphere and after the sensor is launched; it is not uncommon to observe a small shift in some of the calibration parameters. In this paper, we explore several autonomous strategies for on-orbit recalibration of star trackers. We present an improved version of a popular camera model, develop optimizations to identify optimal parameter values, and validate performance using the data collected from on-orbit sensors. When compared with human-mediated batch processing, autonomous methods have comparable reliability, performance, and commissioning time. The sensor datasets used in this paper come from six Sinclair Interplanetary ST-16 star trackers launched between November 2013 and July 2014. Both batch and autonomous approaches to on-orbit calibration yield improvements in measurement availability as well as a 20%-80% reduction in residual geometric error compared to ground calibrations.

History

Language

English

Usage metrics

    Aerospace Engineering

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC