Toronto Metropolitan University
Browse
- No file added yet -

Application of Artificial Neural Network and Information Entropy Theory to Assess Rainfall Station Distribution: A Case Study from Colombia

Download (3.93 MB)
journal contribution
posted on 2023-07-17, 17:50 authored by Augusto Rafael Garrido-Arévalo, Luis Mauricio Agudelo-Otálora, Nelson Obregón-Neira, Victor Garrido-Arévalo, Edgar Eduardo Quiñones-Bolaños, Parisa Naraei, Mehrab MehrvarMehrab Mehrvar, Ciro Fernando Bustillo Lecompte

An assessment of the rainfall station distribution in the mountainous area of the Regional Autonomous Corporation of Cundinamarca (CAR, for its acronym in Spanish), Colombia, was conducted by applying concepts from information entropy and artificial neural networks (ANNs). This study was divided into two phases: first, a classification of the meteorological stations using two-dimensional self-organizing maps; second, the evaluation of the performance of the ANN by applying concepts of information entropy. Three scenarios were raised for the classification of the meteorological stations by adjusting the number of neurons in the output layer. A high number of neurons in the output layer were obtained, causing the model to over-fit while emphasizing differences amid patterns. When comparing the results of the scenarios, the permanence of certain characteristics and features was found in the system, validating the model classification. Subsequently, the results of the first scenario were used to evaluate the entropy of the historical series. Finally, the results show that the area of study presents a lack of information due to the uncertainty associated with the probabilistic arrangement, which can be corrected with the developed model. Consequently, some recommendations for the redesign of the rainfall are provided. 

History

Language

English

Usage metrics

    Chemical Engineering

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC