An Analysis of Power Consumption of Fluid-Driven Robotic Arms Using Isotropy Index: A Proof-of-Concept Simulation-Based Study
The manipulability of a robotic arm may be defined based on ease of motion in different directions or ease of applying force/torque. In this study, we use manipulability measures to investigate how the kinematics of robots can be employed to calculate the optimal power required to drive the actuation systems of their arms. We hypothesize that the isotropy measure is related to the power consumption of the robotic arm. In addition to theoretical aspects, we consider practical applications that can minimize power consumption in robotic systems. Since the method is simple to implement and has no assumption on the robot’s work environment or dependence on information on the main power supply, manipulability measures can be used as a tool to predict the power consumption of robotic manipulators.