Toronto Metropolitan University
Browse

Aerial Grasping of an Object in the Strong Wind: Robust Control of an Aerial Manipulator

Download (3.88 MB)
journal contribution
posted on 2024-03-07, 20:11 authored by Guangyuan Zhang, Yuqing He, Bo Dai, Feng Gu, Liying Yang, Jianda Han, Guang Jun LiuGuang Jun Liu

An aerial manipulator is a new kind of flying robot system composed of a rotorcraft unmanned aerial vehicle (UAV) and a multi-link robotic arm. It gives the flying robot the capacity to complete manipulation tasks. Steady flight is essential for an aerial manipulator to complete manipulation tasks. This paper focuses on the steady flight control performance of the aerial manipulator. A separate control strategy is used in the aerial manipulator system, in which the UAV and the manipulator are controlled separately. In order to complete tasks in environments with strong wind disturbance, an acceleration feedback enhanced robust H∞ controller was designed for the UAV in the aerial manipulator. The controller is based on the hierarchical inner-outer loop control structure of the UAV and composed of a robust H∞ controller and acceleration feedback enhanced term, which is used to compensate for the wind disturbance. Experimental results of aerial grasping of a target object show that the controller can suppress the wind disturbance effectively, and make the aerial manipulator hover steadily with sufficient accuracy to complete aerial manipulation tasks in strong wind.

History

Language

English

Usage metrics

    Aerospace Engineering

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC