Toronto Metropolitan University
Browse
- No file added yet -

A Cascaded and Adaptive Visual Predictive Control Approach for Real-Time Dynamic Visual Servoing

Download (16.88 MB)
journal contribution
posted on 2023-08-18, 16:41 authored by Sina Sajjadi, Mehran Mehrandezh, Farrokh Janabi-SharifiFarrokh Janabi-Sharifi

In the past two decades, Unmanned Aerial Vehicles (UAVs) have gained attention in applications such as industrial inspection, search and rescue, mapping, and environment monitoring. However, the autonomous navigation capability of UAVs is aggravated in GPS-deprived areas such as indoors. As a result, vision-based control and guidance methods are sought. In this paper, a vision-based target-tracking problem is formulated in the form of a cascaded adaptive nonlinear Model Predictive Control (MPC) strategy. The proposed algorithm takes the kinematics/dynamics of the system, as well as physical and image constraints into consideration. An Extended Kalman Filter (EKF) is designed to estimate uncertain and/or time-varying parameters of the model. The control space is first divided into low and high levels, and then, they are parameterised via orthonormal basis network functions, which makes the optimisation- based control scheme computationally less expensive, therefore suitable for real-time implementation. A 2-DoF model helicopter, with a coupled nonlinear pitch/yaw dynamics, equipped with a front-looking monocular camera, was utilised for hypothesis testing and evaluation via experiments. Simulated and experimental results show that the proposed method allows the model helicopter to servo toward the target efficiently in real-time while taking kinematic and dynamic constraints into account. The simulation and experimental results are in good agreement and promising.

History

Language

English

Usage metrics

    Mechanical Engineering

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC